Generating Correlation Matrices for Normal Random Vectors in NORTA Algorithm Using Artificial Neural Networks

نویسندگان

  • Seyed Taghi Akhavan Niaki
  • Babak Abbasi
چکیده

Generating multivariate random vectors is a crucial part of the input analysis involved in discrete-event stochastic simulation modeling of multivariate systems. The NORmal-To-Anything (NORTA) algorithm, in which generating the correlation matrices of normal random vectors is the most important task, is one of the most efficient methods in this area. In this algorithm, we need to solve the so-called correlation-matching problem in which some complicated equations that are defined to obtain the correlation matrix of normal random variables need to be solved. Many researchers have tried to solve these equations by three general approaches of (1) solving nonlinear equations analytically, (2) solving equations numerically, and (3) solving equations by simulation. This paper suggests the use of artificial neural networks, called Perceptron, to solve the corresponding problem. Using three simulation experiments, the applicability of the proposed methodology is described and the results obtained from the proposed method to the ones from solving the equations numerically are compared. The results of the simulation experiments show that the proposed method works well. © 2008 World Academic Press, UK. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and Generating Multi-Variate-Attribute Random Vectors Using a New Simulation Method Combined with NORTA Algorithm

The NORmal-To-Anything (NORTA) algorithm requires a correlation matrix of multivariate normal variables to convert a multivariate normal vector to any other distribution. This paper presents a new simulation method that works in combination with the NORTA algorithm yet avoids having to solve some complicated equations which need to be solved to achieve this matrix. The performance of the propos...

متن کامل

HYBRID ARTIFICIAL NEURAL NETWORKS BASED ON ACO-RPROP FOR GENERATING MULTIPLE SPECTRUM-COMPATIBLE ARTIFICIAL EARTHQUAKE RECORDS FOR SPECIFIED SITE GEOLOGY

The main objective of this paper is to use ant optimized neural networks to generate artificial earthquake records. In this regard, training accelerograms selected according to the site geology of recorder station and Wavelet Packet Transform (WPT) used to decompose these records. Then Artificial Neural Networks (ANN) optimized with Ant Colony Optimization and resilient Backpropagation algorith...

متن کامل

Modeling and Generating Random Vectors with Arbitrary Marginal Distributions and Correlation Matrix

We describe a model for representing random vectors whose component random variables have arbitrary marginal distributions and correlation matrix, and describe how to generate data based upon this model for use in a stochastic simulation. The central idea is to transform a multivariate normal random vector into the desired random vector, so we refer to these vectors as having a NORTA (NORmal To...

متن کامل

Behaviour of the NORTA Method for Correlated Random Vector Generation as the Dimension Increases

The NORTA method is a fast general-purpose method for generating samples of a random vector with given marginal distributions and given correlation matrix. It is known that there exist marginal distributions and correlation matrices that the NORTA method cannot match, even though a random vector with the prescribed qualities exists. In this case we say that the correlation matrix is NORTA defec...

متن کامل

Properties of the Norta Method in Higher Dimensions

The NORTA method for multivariate generation is a fast general purpose method for generating samples of a random vector with given marginal distributions and given productmoment or rank correlation matrix. However, this method has been shown to fail to work for some feasible correlation matrices. (A matrix is feasible if there exists a random vector with the given marginal distributions and the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008